HySpex models overview

All HySpex cameras (except ODIN) can be used for both ground based and airborne applications. The cameras can be delivered with a wide range of close-up lenses, making them very versatile and ideal for a wide range of applications requiring different spatial resolutions without compromising the optical performance of the system.

Main specifications

I					
	VNIR-1024	VNIR-1600	VNIR-1800	SWIR-384	ODIN-1024
Spectral sampling	400 – 1000 nm	400 – 1000 nm	400 – 1000 nm	930-2500 nm	400 - 2500 nm
Spatial pixels	1024	1600	1800	384	1024
Spectral channels	108	160	182	288	427
Spectral sampling	5.4 nm	3.7 nm	3.26 nm	5.45 nm	3.0 nm 6.1 nm
FOV	16.1°	17°	17°	16°	15°
Pixel FOV across/along	0.28/0.56 mrad	0.18/0.36 mrad	0.16/0.32 mrad	0.73/0.73 mrad	0.25/.025 mrad
Bit resolution	12 bit	12 bit	16 bit	16 bit	16 bit
Noise floor	11 e ⁻	40 e ⁻	2.4 e ⁻	150 e ⁻	2.4 e ⁻ 150 e ⁻
Dynamic range	3400	1000	20000	7500	37000 7500
Peak SNR	>330	>200	> 255	> 1100	>500 >1300
Max speed	690 fps	160 fps	180 fps	450 fps	180 fps 450 fps
Power consumption	6 W	6 W	30 W	30 W	60 W
Dimensions (I–w–h)	30.5 – 9.9 – 15 cm	36 – 9.9 –15 cm	39 – 9.9 – 15 cm	38 – 12– 17.5 cm	113.4 – 42.3 – 72.6 cm
Weight	4.2 kg	4.6 kg	5.0 kg	5.7 kg	105 kg

(VNIR | SWIR)

HySpex VNIR-1800

HySpex VNIR-1800

The new HySpex VNIR-1800 **hyperspectral camera** from NEO, is developed for **field**, **laboratory**, **airborne** and **industrial** applications.

HySpex VNIR-1800 utilize a cutting edge **actively cooled and stabilized scientific CMOS** detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where **high radiometric accuracy** is required.

The dynamic range of 20 000 ensures **outstanding SNR levels** even in darker areas of an image of highly dynamic scenes. With a max frame rate of **180 fps**, combined with **aberration corrected optics** and **high optical throughput** (f/2.5), HySpex VNIR-1800 offers a unique combination of data quality, high speed and sensitivity.

A wide range of **close-up lenses** allows the use of the camera at working distances ranging from a few cm **with a spatial resolution of 24 μm**, to infinity for e.g. **airborne remote sensing**.

Flight line with vegetation enhanced in red to the right.

Main specifications

Spectral sampling	400 – 1000 nm
Spatial pixels	1800
Spectral channels	182
Spectral sampling	3.26 nm
FOV	17°
Pixel FOV across/along	0.16/0.32 mrad
Bit resolution	16 bit
Noise floor	2.4 e⁻
Dynamic range	20000
Peak SNR (at full resolution)	> 255
Max speed	180 fps
Power consumption	30 W
Dimensions (l–w–h)	39 – 9.9 – 15 cm
Weight	5.0 kg

HySpex SWIR-384

The new HySpex SWIR-384 hyperspectral camera from NEO, is developed for **field**, **laboratory**, **airborne and industrial applications**. The new state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range and **exceptional SNR levels**.

With a max frame rate of **450 fps**, combined with an aberrationcorrected optical system with high optical throughput (f/2), the **data quality, speed** and **sensitivity** is truly **state of the art**.

A wide range of **close-up lenses** allows the use of the camera at working distances ranging from a few cm with a spatial resolution of **53 µm** to infinity for e.g. airborne remote sensing.

Kaolinite abundance map (courtesy: CSIRO, Minerals Down Under Flagship Minerals Down Under Flagship)

Main specifications

Spectral sampling	930-2500 nm
Spatial pixels	384
Spectral channels	288
Spectral sampling	5.45 nm
FOV	16°
Pixel FOV across/along	0.73/0.73 mrad
Bit resolution	16 bit
Noise floor	150 e ⁻
Dynamic range	7500
Peak SNR (at full resolution)	> 1100
Max speed	450 fps
Power consumption	30 W
Dimensions (l–w–h)	38 – 12– 17.5 cm
Weight	5.7 kg

HySpex ODIN-1024

HySpex ODIN-1024 is a **next generation** state-of the-art airborne hyperspectral imager, covering the spectral range from **400 to 2500 nm**.

Perfect co-registration between 1024 spatial pixels for VNIR and SWIR is achieved by employing a novel **common fore-optics** design.

In addition to the **extreme resolution**, the unique design provides high sensitivity and low noise, low spatial and spectral misregistration (smile and keystone).

In addition to its supreme data quality, HySpex ODIN-1024 includes **real-time data processing** functionalities such as **real-time georeferencing** of acquired images. It also features built-in **on-board calibration** system to monitor the stability of the instrument.

False color VNIR and SWIR representation of flight line acquired during ODIN test flight.

Main specifications

Spectral sampling	0.4 - 1.0 μm 0.95 - 2.5 μm
Spatial pixels	1024
Spectral channels	427
Spectral sampling (VNIR SWIR)	3.0 nm 6.1 nm
FOV	15°
Pixel FOV across/along	0.25/.025 mrad
Bit resolution	16 bit
Noise floor (VNIR SWIR)	2.4 e ⁻ 150 e ⁻
Dynamic range (VNIR SWIR)	37000 7500
Peak SNR (at full resolution)	>500 >1300
Max speed	180 fps 450 fps
Power consumption	60 W
Dimensions (I–w–h)	113.4 – 42.3 – 72.6 cm
Weight	105 kg
	(VNIR SWIR)

www.hyspex.no|NorskElektroOptikkAS|Solheimveien62A|Postboks384|1471Lørenskog|Norway|hyspexsales@neo.no

Airborne Applications

High resolution and **high speed**, combined with **low weight and power** consumption, make NEO's HySpex cameras very well suited for airborne data acquisition.

A typical airborne installation consists of the **HySpex cameras** coupled with an **airborne data acquisition unit**, a navigation system (**IMU/GPS**) and a **mounting platform**.

Both **actively stabilized** and **passively damped** mounting platforms can be supplied, as well as standard mounting plates with **no damping**.

IMU/GPS solutions from **leading manufacturers** can be supplied and integrated with the cameras. Alternatively, HySpex systems can be interfaced with the customer's existing navigational hardware.

Laboratory Setup

For lab and field use, a scanning stage is needed to scan the cameras and build the hyperspectral data cube of the scene. A **user friendly table-top lab setup** with translation stage, VNIR-SWIR light sources and close-up lenses can also be supplied for scanning of samples of varying sizes.

The scanning speed is **automatically controlled** by the data acquisition unit, based on the selected lens option. The lab rack includes a camera adjustment platform, to facilitate camera **focus adjustment** when using different close-up lenses.

Field Setup

For **field operations**, NEO supplies a range of high precision rotation stages tailored to fit the number of cameras and the operational scheme. Long-life Li-ion **battery powered** solutions are available for increased **portability**

For **fast and precise scanning** of larger areas, such as a **mine face**, **outcrop** or **building**, NEO can supply an **automatic pan-tilt scanner**. By inputting the number of degrees and scan lines to scan in both the horizontal and vertical direction, the stage will automatically scan the **pre-programmed area**, ensuring the desired overlap between scan lines.

To ensure **stable and reliable acquisitions** in challenging field conditions, a **rugged, yet portable, tripod** is supplied. NEO supplies a variety of tripods with pan/tilt-heads that will accommodate the payload of the cameras and rotation stage used.