

The *RIEGL* LMS-Q160 is a compact and extremely lightweight 2D scanning laser radar optimized for detecting even low-cross-section targets such as wires, thin branches etc.

The instrument is designed for operation as an anti-collision sensor for unmanned airborne vehicles but can also be advantageously used for land vehicles and surveillance applications. It is based on the time-of-flight measurement principle using short infra-red laser pulses and opto-mechanical scanning to provide on-line range and angle data of targets within the scanner's field-of-view (FOV).

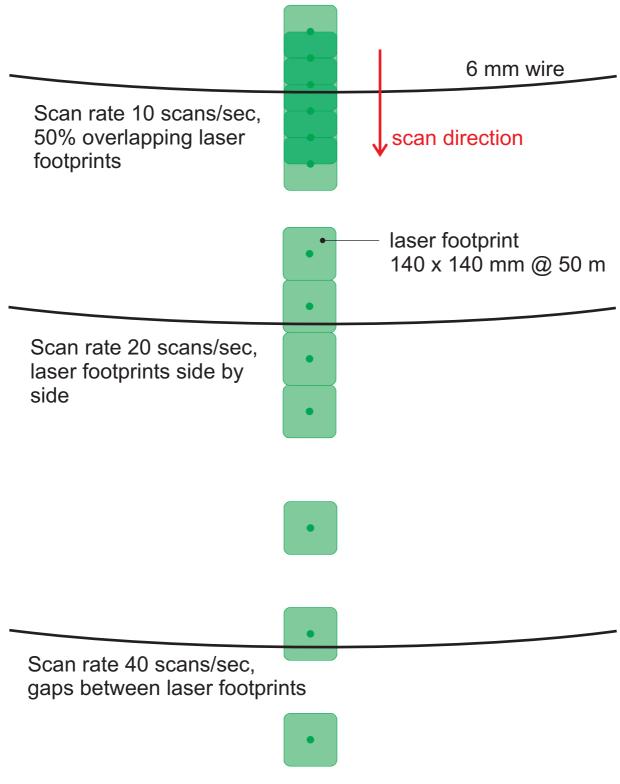
The instrument needs only one power supply and provides scan data online via an integrated TCP/IP Ethernet interface. The binary data stream can easily be decoded and processed using the available software library.

The mechanical structure of the LMS-Q160 is extremely lightweight but on the other hand robust enough to withstand the shock and vibration load of land based or airborne vehicles.


Main applications include:

- Collision avoidance
- Surveillance

visit our webpage www.riegl.com



Dimensional Drawings LMS-Q160 Anti-Collision Laser Sensor

Laser Footprint Pattern LMS-Q160 Anti-Collision Laser Sensor

The graphics show examples of laser footprint patterns for different scan rates at a target distance of 50 m, the target object is a horizontally orientated wire, the scanning direction is vertical.

Technical Data LMS-Q160 Anti-Collision Laser Sensor

Rangefinder performance ¹⁾	
Laser product classification	Class 1 for the scanned laser beam
according to IEC60825-1:2007 The following clause applies for instruments delivered into the United States: Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.	CLASS 1 LASER PRODUCT
Maximum measurement range	
for wire targets ²⁾	up to 60 m
for natural flat targets ³⁾	up to 200 m
Minimum range	2 m
Accuracy ^{4) 6)}	20 mm
Precision ⁵⁾⁶⁾	15 mm
Effective measurement rate	10 000 measurements/sec
Multi target resolution	8 m
Laser wavelength	near infrared
Beam divergence 7)	2.7 mrad

1) First or last target mode selectable. Maximum measurement range and accuracy is defined below for a visibility >1km, overcast sky or night.

2) Diameter of wire in excess of 6 mm. Diffuse reflectivity of wire surface in excess of 15%. Beam incidence perpendicular to wire. The maximum measurement range to the specified target drops to 50 m in case of an angle of incidence of 45 deg, provided that the surface of the wire is reflecting strictly diffusely.

3) Diffuse reflectivity in excess of 10%. Beam incidence perpendicular to target. Size in excess of laser beam diameter.

Max. measurement range for an extended flat target of 15% reflec-tivity will drop to 160m for an angle of incidence of 45°.

4) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.

5) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.

6) One sigma @ 50 m range under *RIEGL* test conditions.

7) 2.7 mrad correspond to 27 cm increase of beam width per 100 m of range.

Scanner performance

Scan angle range Scanning mechanism Scan speed ⁸⁾ Angle measurement resolution Measurements per line	+/- 40° = 80° rotating polygon mirror 5 scans/sec to 60 scans/sec 0.01° 500 @ 20 scans/sec, 1000 @ 10 scans/sec
Internal Sync Timer	Option for real-time synchronized time stamping of scan data
Scan Sync	Option for synchronizing scan lines to external timing signal

8) Scanning parameters can be set via TCP/IP configuration interface.

General technical data

Interface Power supply input voltage Power consumption Current consumption Temperature range

Main dimensions Weight Protection class TCP/IP Ethernet, 10/100 MBit/sec 18 - 32 V DC typ. 48 W typ. 2.0 A @ 24 V DC -10°C to +50°C (operation) -20°C to +60°C (storage) \emptyset 170 x 350 mm (diameter x length) approx. 4.6 kg IP 54

Information contained herein is believed to be accurate and reliable. However, no responsibility is assumed by *RIEGL* for its use. Technical data are subject to change without notice. Data sheet, LMS-Q160, 28/07/2010

